

The Proceedings of the International Conference on Recent Developments in Science, Technology, Humanities and Management, 28-29 April 2017, Kuala Lumpur

102

Hardware Tuning Based Approach for Data Warehouse

Tuning

Hitesh Kumar Sharma
1
, Jagdish Chandra Patni

2
, Ravi Tomar

3
, Md. Ezaz Ahmed

4

1,2,3
University of Petroleum and Energy Studies, Dehardun, India

1
hkshitesh@gmail.com,

 2
patnijack@gmail.com,

 3
ravitomar7@gmail.com

4
Saudi Electronic University Al Madinah. KSA

4
ahmedezaz@rediffmail.com

Abstract
The concept of the data warehouse has been emerging

over the last few years, but with the new, faster

computers and the reduction in the cost of disk storage,

the data warehouse is finally becoming a reality. This

paper first looks at what a data warehouse is, then at the

characteristics of the data warehouse, and then at the

data access patterns seen in the data warehouse.

KEYWORDS
OLTP, DSS, Data Warehouse, OS

1. INTRODUCTION
As its name implies, the data warehouse is a storage

depot for corporate data. Enormous amounts of data are

concentrated in the data warehouse; sources for the data

include the following:

 Customer information databases

 Accounts receivable

 General ledger

 Inventory databases

 Customer credit databases

 Other sources

These sources combine to provide a wealth of data about

customers and their buying habits as well as information

about the general state of our business.

A data warehousing system is similar to a DSS system

in some of its functionality, but the scale and focus are

different. A typical DSS system focuses on one type of

business function; by using its various data-input

sources, the data warehousing system may perform

much broader business queries. Data warehousing

systems can easily achieve sizes in the hundreds of

gigabytes; some systems even break the terabyte barrier.

These systems are made possible by the continuing

trend of computer hardware to increase in speed while

decreasing in price. In the near future, it may not be

uncommon to see tables of a terabyte in size [1. 2].

Although the cost of data warehousing hardware is

decreasing, it is still out of reach of the main stream for

now. As we go further into the information age and the

value of information is better understood, We believe

data warehousing will become more mainstream.

2. CHARACTERISTICS OF A DATA

WAREHOUSE
Here are some of the characteristics of the data

warehousing system:

 Queries against large volumes of data. The data

warehousing system consists of much more data

than the typical OLTP or DSS system.

 Queries exhibit a variety of access patterns.

Queries may be simple or quite complex, with

complicated joins and aggregations on large

amounts of data.

 Highly complex queries. Queries on a data

warehouse are typically much more complex than

those used in OLTP and DSS systems.

 Data access stresses the system to its limitations.

The processes stretch the system in terms of both

performance and capacity.

 Intense load activity. As data from various

sources is entered into the data warehouseing

system, the load increases dramatically.

 Is a conglomeration. A data warehouse is a

compilation of various input sources, usually tied

into the corporate OLTP databases and other

sources.

The load on the data warehousing system is typically

very high. As with the DSS system, because users do

not typically use a data warehousing system for online

processing, it is reasonable to push the system to its

limits. It is not uncommon for the decision support

queries run against the data warehousing system to take

hours or even days to complete. The queries are

complex and the amount of data being queried is

enormous. These systems are optimized for throughput

rather than for response times. By maximizing

throughput, some jobs may suffer in terms of response

time. If we think that the data warehousing system is

just a glorified DSS system, we are partially correct. The

data warehouse may just be the next step in the

evolution of the DSS system. There are many

similarities, but there are many differences as well.

mailto:hkshitesh@gmail.com

The Proceedings of the International Conference on Recent Developments in Science, Technology, Humanities and Management, 28-29 April 2017, Kuala Lumpur

103

3. DATA ACCESS PATTERNS
The data access patterns seen in a data warehouse are

fairly similar to those seen in a DSS system. Based on

the types of transactions we generate, we should be able

to fairly accurately determine these patterns. Although

each system has its own specific data access patterns,

the data warehousing system has the following, general

characteristics:

Redo log activity is moderate to high. Unlike the DSS

system (where the redo log activity is very low), the

redo log activity for a data warehouse may be moderate

or even high. This is caused, not by the activity of the

business transactions, but by the procedures necessary to

prepare and load the data. The metadata may be

constantly put together from many external sources.

 Archiving activity is moderate to high. As with

the redo logs, there may be significant activity due

to the conglomeration of data stored in the data

warehouse.

 Data access for each query is mostly sequential.

Because the queries usually extract large amounts

of data from the tables, full-table scans are not

uncommon.

 Data reads can (and frequently do) take

advantage of multiblock reads. We can expect

that many of the disk accesses are the size of

multi block reads.

 Access to the data files is somewhat random.

As with the DSS system, this random access is

caused by contention with other transactions and

join and indexing operations that result in fairly

random access across the data volumes. However,

these random reads from the disk drives access

the data with a much larger data request.

 Data access may be sparse. Because of the

massive amounts of data being stored, there may

be pockets of data infrequently accessed and other

pockets that see much more frequent access.

 Heavy access to the temporary tables. Because

of the typical size of many of the join and sort

operations, the temporary tables are hit hard.

Remember that only the sorts that use less

memory than SORT_AREA_SIZE are in

memory.

 Data access may not be distributed evenly.

Because of the massive amount of data stored in

the warehouse, it is not uncommon for queries to

use only isolated pieces of data.

Although these patterns vary depending on how our

system operates, the general principles are the same.

The access patterns to our tables vary based on how

often and how much is done to each table.

4. SYSTEM LOAD
Like the DSS system, the CPUs in a data warehousing

system are usually 100 percent active during the large

business queries. Where OLTP systems have many

users with small queries, the data warehousing system

has relatively few users and massive queries (as does a

DSS system).These queries should be able to take

advantage of the capabilities of the CPUs and memory

as long as the system does not become disk bound. By

tuning the server using some of the concepts, we can

avoid becoming disk bound. The typical OLTP, batch,

or DSS system may have an insufficient number of disk

drives, which causes an I/O bottleneck. The data

warehousing system may not have this problem because

so much disk space is needed for the hundreds of

gigabytes of historical and current business data, that,

with careful planning, there are plenty of disk spindles

to distribute the I/O load. Following is a list of some of

the load characteristics of a data warehousing system:

 Relatively few processes on the system. If we

take advantage of the Parallel Query option, we

add more processes and subsequently more

process switches.

 Minimal network traffic. Network traffic is low

during the transaction processing phases but may

be significant during the data loading and

updating phases.

 Heavy I/O usage. The decision support queries

associated with the data warehouse usually

generate large amounts of I/O to the data files.

This I/O is somewhat random if multiple decision

support queries are active simultaneously; but the

I/Os are larger in size because of multiblock

reads.

 Moderate to high redo log activity. Unlike the

DSS system (where the redo log activity is very

low), the redo log activity for a data warehouse

may be moderate or even high. This is caused, not

by the activity of the business transactions, but by

the procedures necessary to prepare and load the

data. The metadata may be constantly put together

from many external sources.

 Moderate to heavy use of rollback segments.

During the decision support queries, rollback

segments will not be used heavily, but during the

data-creation or conversion phase, rollback

segment activity can be significant.

 Large amounts of memory. The memory is used

not only for the SGA but for each of the server

processes required for sort and join operations.

Defining and understanding these characteristics can

help we design and tune our data warehouse [3] for

optimal performance. The first sep in this design process

is to set goals for what we want to achieve.

The Proceedings of the International Conference on Recent Developments in Science, Technology, Humanities and Management, 28-29 April 2017, Kuala Lumpur

104

5. GOALS
The goal in tuning the data warehouse is to achieve a

system that has certain characteristics. Here is a list of

the characteristics of an optimally tuned data warehouse:

 The system is CPU bound during decision

support queries. By removing all other

bottlenecks, the system should be able to process

as fast as possible, which is the speed of the

CPUs.

 The system is not drive bound. Any disk

bottleneck degrades performance. If this is the

case, we should add more or faster disks.

 Memory is sufficient. If the machine pages or

swaps, performance is severely degraded. The

best solution is to add more memory; if that is not

possible, reduce the size of the SGA or the

number of users until the system no longer pages

or swaps.

 The system meets any additional requirements

we might have. With some data warehousing

machines, we must keep current with the OLTP

systems by updating on a nightly basis. With the

data warehouse, we may have to update the data

within a certain time frame.

By setting goals for how we expect the system to

perform, we can determine whether we are successful.

We can also determine earlier whether we will be able

to achieve our specified goals.

6. DESIGN CONSIDERATIONS
Looking at data access patterns can give us a good idea

how to design the system. Before looking at the design

process, consider these important issues, introduced

earlier in this book:

 I/O is typically the limiting factor in the

system. We can do only a fixed number of

random I/Os per second per disk drive.

 I/Os can be reduced by caching data blocks in

the SGA. If the data we want to access is already

in the SGA, a disk I/O is not required.

 Isolate sequential I/Os. Most of the time spent

reading from or writing to the disk is spent

seeking to where the data is located. If we can

reduce seeks, we can achieve more I/Os per

second.

 Spread out random I/Os. Random I/Os have a

maximum rate per drive. By spreading the I/Os

out among many drives, we increase the overall

rate.

 Avoid paging and swapping. Any time the

system pages or swaps, performance is severely

degraded. Avoid this at all costs.

All these factors contribute to the optimal data layout of

the system. The physical layout along with SGA and

shared pool tuning creates an optimally configured

server for the decision support tasks usually performed

in the data warehouse. In data warehousing systems, the

design of the queries is also very important, as we will

see in later chapters.

7. PHYSICAL DATA LAYOUT
This section looks at how the data in a data warehouse

should be configured. First, it looks at how to lay out the

data on traditional disks; then it looks at disk arrays. We

recommend using disk arrays if at all possible; the ease

of use and performance benefits are worth the cost of

the array.

The main goals in designing the physical data layout are

to balance the I/O across all the disks that are randomly

accessed and to isolate the sequential I/O. The data

warehousing system typically involves loading and

processing of data, which causes moderate to significant

use of the redo logs. By isolating the redo log file in a

data warehouse, the majority (if not all) of the data files

are accessed in a random fashion but can take advantage

of multiblock reads. To take advantage of multiblock

reads, stripe the data over as many disks as necessary to

achieve I/O rates our disk drives can handle.

8. TRADITIONAL DISKS
The layout for a data warehouse can be large and

difficult to manage. A minimal configuration should

look something like this:

Both the data files and the indexes should be striped

over as many disk drives as necessary to achieve

optimal I/O rates on those disks. remember that we can

only push a disk drive to a maximum random I/O rate.

The data and indexes can be striped across the disks

using Oracle or RAID striping or a combination of the

two. With large data warehousing systems, We

recommended OS or hardware striping. To take

advantage of the Oracle Parallel Query option, we will

benefit from having several large extents. An optimal

configuration may consist of several data files residing

on the same large, striped volume. If we do not use

The Proceedings of the International Conference on Recent Developments in Science, Technology, Humanities and Management, 28-29 April 2017, Kuala Lumpur

105

Oracle striping and build one large extent, we may not

see the full benefits of the Parallel Query option. We

preferred a hardware disk array to manual Oracle

striping primarily because the disk array provides

excellent performance and is easy to use. When we use a

disk array, the task of distributing I/Os can be greatly

simplified.

Disk Arrays

The layout for the data warehouse on RAID volumes is

much simpler than it is on traditional disk drives. A

minimal configuration should look something like this:

Both the data files and the indexes should be striped

over as many disk drives as necessary to achieve

optimal I/O rates on those disks. we can only push a

disk drive to a maximum random I/O rate. Unlike

traditional disk drives, when we use a disk array, the

data is automatically striped across all the disk drives;

therefore, it is necessary to create only one table space

and table for all our data. We do not even have to put

indexes into another table space although We

recommend doing so for other reasons (such as

monitoring and maintenance).With traditional disk

partitioning, it is difficult to manage hundreds of data

files and disks; with a disk array, we can manage

hundreds of disks with just a few data files. Of course,

Oracle has a 2 gigabyte limitation on the size of a data

file, but this is easily resolved by creating a data file for

every 2 gigabytes of space we need. The data files can

all reside on the same disk array volume. By splitting

table spaces into several data files with tables striped

across them, all residing on the same logical volume, we

can take better advantage of the Parallel Query option.

Because the data warehouse may have a large amount of

data that is sparsely accessed, it is to our advantage to

put many different types of archival and current data on

each disk volume. By spreading out the data, the I/O

load is more evenly distributed. If we use a disk array,

many of the management tasks and load balancing tasks

are greatly simplified. With the disk array, we also have

the option of using fault tolerance without affecting

system performance. Of course, using fault tolerance

requires significantly more disks. We recommend that

we use a disk array if possible. Software striping is fine,

but if our system is under heavy loads (as it is with a

typical data warehousing system), we can achieve better

performance by offloading the striping overhead to a

hardware RAID controller.

9. FAULT TOLERANCE

CONSIDERATION
Because the data warehouse contains so much data, we

can take one of two approaches to data

protection:

 Protect everything. Because there is so much

data and so many disks in use, everything must be

protected. The large number of disks in use

increases the possibility of a disk failure. The

massive amount of data increases the time needed

for backup and recovery.

 Conserve cost. Because there are so many disks

involved, it may be cost prohibitive to use RAID-

1 or disk mirroring. When we mirror the disks, we

double the number of disks.

In a data warehousing system, a good compromise is to

use a fault tolerant method such asRAID-5 for the data

files. We can be somewhat selective and use RAID-1 on

volumes with heavy update activity and RAID-5 on

volumes with more read activity. Remember that the

performance penalty for RAID-5 is only on writing; we

can achieve excellent read performance from RAID-5.

10. HARDWARE CONSIDERATIONS
When choosing hardware to use for a data warehousing

system, consider these factors:

 Low user load. Not many concurrent

processes/threads simultaneously access the

system—unless we take advantage of the Parallel

Query option.

 High I/O load. I/Os are concurrent and heavy,

with mostly random I/O.

 Huge amounts of data. Data warehousing

systems typically involve massive amounts of

data. We must make sure that our system can

support the high volumes of data we will be using.

 Low network traffic during runtime, possibly

high during load. During the execution of typical

decision support queries against our data

warehouse, there is very little network activity.

When data is being loaded or updated from other

sources (possibly our OLTP systems), the network

activity can be quite high.

The Proceedings of the International Conference on Recent Developments in Science, Technology, Humanities and Management, 28-29 April 2017, Kuala Lumpur

106

If we can take advantage of the Oracle Parallel Query

option, many different processes will use the machine at

once; an SMP or MPP machine should scale very well.

Because an SMP architecture uses CPUs based on the

processes that are available to be run, if we always have

a runnable process available for each CPU, we should

see good scaling by adding additional processors. With

an MPP machine, we see a similar effect but on a much

larger scale. Because there is much random access to the

disks, we can benefit from a disk array. We prefer

hardware striping to OS striping because hardware

striping does not incur any additional over head for the

operating system and does not take up valuable CPU

cycles. If hardware striping is not available, OS striping

is adequate. Network traffic may or may not be an issue

to our data warehousing system. If necessary, segment

the network or add faster network hardware. A network

bottleneck is an easy problem to solve: simply add more

and faster hardware.

11. TUNING CONSIDERATIONS
The data warehouse is tuned to allow several large

processes to run at maximum throughput. There is

usually no concern for response times. We may have to

tune both Oracle and the server operating system. The

following sections look first at Oracle and then at the

server operating system [4-12].

Server OS Tuning

We may have to tune the server OS to provide for a

large number of processes (if we are using the Parallel

Query option) and optimal I/O performance. Some of

the things we may have to tune in the server OS are

listed here; remember that some OSes may not require

any tuning in these areas:

 Memory. Tune the system to reduce unnecessary

memory usage so that Oracle can use as much of

the system‟s memory as possible for the SGA and

server processes. We may also need significant

amounts of memory for sorts.

 Memory enhancements. Take advantage of 4M

pages and ISM, if they are available. Both

features can improve Oracle performance in a data

warehouse environment.

 I/O. If necessary, tune I/O to allow for optimal

performance and use of AIO.

 Scheduler. If possible, turn off preemptive

scheduling and load balancing. In a data

warehousing system, allowing a process to run to

completion (that is, so that it is not preempted) is

beneficial.

 Cache affinity. We may see some benefits from

cache affinity in a data warehousing system

because the processes tend to run somewhat

longer. The server operating system is mainly a

host on which Oracle does its job. Any work done

by the operating system is essentially overhead for

Oracle. By optimizing code paths and reducing

OS overhead, we can enhance Oracle

performance.

12. HARDWARE ENHANCEMENTS
For a data warehouse, there are several hardware

enhancements that can improve performance. These

hardware enhancements can be beneficial in the area of

CPU, I/O, and network, as described in the following

sections.

CPU Enhancements

Enhancing the CPUs on our SMP or MPP system can

provide instantaneous performance improvements,

assuming that we are not I/O bound. The speed of CPUs

is constantly being improved as are new and better

cache designs. For SMP or MPP machines, the process

of enhancing the CPU may be as simple as adding an

additional CPU board. Before we purchase an additional

processor of the same type and speed, however, consider

upgrading to a faster processor. For example, upgrading

from a 66 MHz processor to a 133 MHz processor may

provide more benefit than purchasing an additional

66MHz CPU with the added benefit that we now have

the option of adding more 133 MHz CPUs. Because of

the complexity and run time required by these queries,

we can benefit from more and faster CPUs.SMP and

MPP computers provide scalable CPU performance

enhancements at a fraction of the cost of another

computer. When upgrading our processors or adding

additional processors, remember that our I/O and

memory needs will probably increase along with the

CPU performance. Be sure to budget for more memory

and disk drives when we add processors.

I/O Enhancements

We can enhance I/O by adding disk drives or purchasing

a hardware disk array. The data warehouse can benefit

from the disk striping available in both hardware and

software disk arrays. Using Oracle data file striping can

also help the performance of our data warehouse. If our

system performs only one query at a time and we are not

taking advantage of the Oracle Parallel Query option,

we may not see a benefit from a hardware or software

disk array. In this specific case, we do not recommend

OS or hardware striping; we should use traditional

Oracle striping. Because we are executing only one

query at a time without using the Parallel Query option,

the I/Os to the data files are purely sequential on the

table scans. This scenario is somewhat rare; any

variance from “pure table scans” results in degraded

performance. Hardware and software disk arrays have

the added benefit of optional fault tolerance. We should

first choose the correct fault tolerance for our needs and

then make sure that we have sufficient I/O capabilities

The Proceedings of the International Conference on Recent Developments in Science, Technology, Humanities and Management, 28-29 April 2017, Kuala Lumpur

107

to achieve the required performance level. If we use

fault tolerance, we will most likely have to increase the

number of disk drives in our system. Another benefit of

hardware disk arrays is caching. Most disk arrays on the

market today offer some type of write or read/write

cache on the controller. The effect of this cache is to

improve the speed of writing to the disk; the cache also

masks the overhead associated with fault tolerance. If

our queries often perform table scans, we may see good

improved performance with disk controllers that take

advantage of read-ahead features. Read-ahead occurs

when the controller detects a sequential access and reads

an entire track (or some other large amount of data) and

caches the additional data in anticipation of a request

from the OS. Unlike an OLTP system in which this is

just wasted overhead, in the data warehouse where we

are performing DSS queries, it is likely that we will

need that data soon; if we do, it will be available very

quickly. Enhancements to the I/O subsystem almost

always help in a data warehouse environment because

large amounts of data are accessed. Be sure that we have

a sufficient number of disk drives, properly configured.

An I/O bottleneck is usually difficult to work around. As

with all types of systems, a well-tuned application is

very important.

13. CONCLUSION
As the price of computer hardware especially disk

drives comes down every year, the idea of a data

warehouse becomes increasingly more feasible. The

amount of hardware that a few short years ago would

have cost millions of dollars can now be obtained for

much less. The performance of this hardware is also

increasing at incredible rates. PC servers are now

replacing systems that was considered minicomputers a

few years ago with twice the capacity at half the cost.

The ongoing reduction in cost and increase in

performance will promote the trend of larger and larger

databases with better information retrieval. The goal of

the data warehouse is to take information from

production databases, legacy data, and outside sources

and use this information to better our business. As

hardware gets faster and faster at less cost, this trend

will continue; new applications and ways of looking at

our business data will be developed. It‟s very exciting to

look at the way the RDBMS industry has grown in the

last few years. It will be exciting to see where it goes in

the next few years.

This paper looked at the characteristics of the data

warehouse as a business model and from the data access

perspective. We can use this information to determine

how to configure the system to take advantage of the

data access patterns. If we understand how the system

operates and what affects the performance of the system,

we can use this information to design a system that has

well-balanced I/Os and that can take full advantage of

the computer‟s CPU power.

14. REFERENCES
[1] J. Seok Oh, S. Ho Lee, Resource Selection for

Autonomic Database Tuning, Korea Research

Foundation.

 [2] K. P. Brown, M. Metha, M. J. Carey, M. Livny,

1994. Towards Automated Performance Tuning

for Complex Workloads, Proceedings of 20
th

VLDB Conference, Santiago, pp. 72-84.

[3] D. M. Lane, “Hyperstat Online: An Introductory

Statistics Textbook and Online Tutorial for Help

in Statistic,

http://davidmlane.com/hyperstat/index.html

[4] S. Elnaffar, W. Powley, D. Benoit, P. Martin, 2003.

Today‟s DBMSs: How Autonomic are They?,

Proceedings of the 14
th

DEXA Workshop, Prague,

pp. 651-654.

[5] D. Menasec, Barbara, and R. Dodge, 2001.

Preserving Qos of E-Commerce Sites through

Self-Tuning: A Performance Model Approach,

Proceedings of 3
rd

ACM-EC Conference, Florida,

pp. 224-234.

[6] D. G. Benoit, Automated Diagnosis and Control of

DBMS resources, EDBT Ph.D Workshop,

Konstanz, 2000.

[7] B. K. Debnath, 2007. SARD: A Statistical

Approach for Ranking Database Tuning

Parameters.

[8] K. P. Brown, M. J. Carey, M. Livny, 1996. Goal-

Oriented Buffer Management Revisited,

Proceedings of ACM SIGMOD Conference,

Montrea, pp. 353-364.

[9] P. Martin, H. Y. Li, M. Zheng, K. Romanufa, 2002.

W. Poweley, “Dynamic Reconfiguration

Algorithm: Dynamically Tuning Multiple Buffer

Pools, Proceedings of 11
th

DEXA conference,

London, pp.92-101.

[10] P. Martin, W. Powely, H. Y. Li, and K. Romanufa,

2002. Managing Database Server Performance to

Meet Qos Requirements in Electronic Commerce

System, International Journal of Digital Libraries,

Volume 8, Issue 1, pp. 316-324.

[11] S. Duan, V. Thummala, S. Babu, 2009. Tuning

Database Configuration Parameters with iTuned”,

VLDB „09, Lyon, France.

[12] H. K. Sharma, A. Shastri, R. Biswas, 2002.

Architecture of Automated Database Tuning

Using SGA Parameters, Database Systems

Journal, Volume 3, Issue 1.

